Port-Hamiltonian systems on discrete manifolds
نویسندگان
چکیده
منابع مشابه
Port-Hamiltonian systems on discrete manifolds
This paper offers a geometric framework for modeling port-Hamiltonian systems on discrete manifolds. The simplicial Dirac structure, capturing the topological laws of the system, is defined in terms of primal and dual cochains related by the coboundary operators. This finitedimensional Dirac structure, as discrete analogue of the canonical Stokes-Dirac structure, allows for the formulation of f...
متن کاملDiscrete port-Hamiltonian systems
Either from a control theoretic viewpoint or from an analysis viewpoint it is necessary to convert smooth systems to discrete systems, which can then be implemented on computers for numerical simulations. Discrete models can be obtained either by discretizing a smooth model, or by directly modeling at the discrete level itself. One of the goals of this paper is to model port-Hamiltonian systems...
متن کاملPort-Hamiltonian Systems on Graphs
In this paper we present a unifying geometric and compositional framework for modeling complex physical network dynamics as portHamiltonian systems on open graphs. Basic idea is to associate with the incidence matrix of the graph a Dirac structure relating the flow and effort variables associated to the edges, internal vertices, as well as boundary vertices of the graph, and to formulate energy...
متن کاملDirect discrete-time control of port controlled Hamiltonian systems
The direct discrete time control of Port Controlled Hamiltonian Systems (PCHS) in the sense of energy shaping and damping injection is considered. In order to give a direct discrete time design method for PCHS, firstly an appropriate discrete gradient is proposed, which enables the derivation of a discrete time equation corresponding to the discrete time counterpart of Hamiltonian Systems. Usin...
متن کاملDiscrete IDA-PBC Design for 2D Port-Hamiltonian Systems
We address the discrete-time passivity-based control laws synthesis within port-Hamiltonian framework. We focus on IDA-PBC design for canonical port-Hamiltonian systems with separable energy being quadratic in momentum. For this class of systems, we define a discrete Hamiltonian dynamics that exactly satisfies a discrete energy balance. We then derive a discrete controller following the IDA-PBC...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC Proceedings Volumes
سال: 2012
ISSN: 1474-6670
DOI: 10.3182/20120215-3-at-3016.00137